Java NIO NIO基础 hiriki 2023-04-09 2023-09-15 在Java中,提供了一些关于使用IO的API,可以供开发者来读写外部数据和文件,我们称这些API为Java IO。IO是Java中比较重要知识点,且比较难学习的知识点。并且随着Java的发展为提供更好的数据传输性能,目前有三种IO共存;分别是BIO、NIO和AIO。
Java BIO[Blocking I/O] | 同步阻塞I/O模式
BIO 全称 Block-IO ,是一种同步且阻塞的通信模式。是一个比较传统的通信方式,模式简单,使用方便。但并发处理能力低,通信耗时,依赖网速。
Java AIO[Asynchronous I/O] | 异步非阻塞I/O模型
Java AIO,全称 Asynchronous IO,是异步非阻塞的IO。是一种非阻塞异步的通信模式。在NIO的基础上引入了新的异步通道的概念,并提供了异步文件通道和异步套接字通道的实现。
Java NIO[Non Blocking I/O] | 同步非阻塞模式
Java NIO,全称 Non-Block IO ,是Java SE 1.4版以后,针对网络传输效能优化的新功能。是一种非阻塞同步的通信模式。
NIO 与原来的 I/O 有同样的作用和目的, 他们之间最重要的区别是数据打包和传输的方式。原来的 I/O 以流的方式处理数据,而 NIO 以块的方式处理数据。
面向流的 I/O 系统一次一个字节地处理数据。一个输入流产生一个字节的数据,一个输出流消费一个字节的数据。
面向块的 I/O 系统以块的形式处理数据。每一个操作都在一步中产生或者消费一个数据块。按块处理数据比按(流式的)字节处理数据要快得多。但是面向块的 I/O - 缺少一些面向流的 I/O 所具有的优雅性和简单性。
NIO 三大组件 Channel & Buffer Channel 类似于 stream 流,它是读写数据的双向管道,Buffer 相当于一个内存缓冲区,用来暂存 读取或写入 Channel 的数据。可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层。
1 2 3 graph LR channel --> buffer buffer --> channel
常见的 Channel 有
FileChannel 用于文件传输
DatagramChannel 用于 UDP 报文传输
SocketChannel 用于 TCP 字节流传输
ServerSocketChannel 用于 TCP 服务端字节流传输
buffer 则用来缓冲读写数据,常见的 buffer 有
ByteBuffer
MappedByteBuffer
DirectByteBuffer
HeapByteBuffer
ShortBuffer
IntBuffer
LongBuffer
FloatBuffer
DoubleBuffer
CharBuffer
Selector selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途
多线程版设计 一个 thread 管理一个 socket。
1 2 3 4 5 6 graph TD subgraph 多线程版 t1(thread1) --> s1(socket1) t2(thread2) --> s2(socket2) t3(thread3) --> s3(socket3) end
⚠️ 多线程版缺点
内存占用高
线程上下文切换成本高
只适合连接数少的场景
线程池版设计 使用线程池让 某一个 thread 能管理多个 socket ,但同一时刻只能处理一个 socket 。
1 2 3 4 5 6 7 graph TD subgraph 线程池版 t4(thread1) --> s4(socket1) t5(thread2) --> s5(socket2) t4(thread1) -.-> s6(socket3) t5(thread2) -.-> s7(socket4) end
⚠️ 线程池版缺点
阻塞模式下,线程仅能处理一个 socket 连接
仅适合短连接场景
selector 版设计 线程的实现 selector 的作用就是配合一个线程来管理多个 channel,监听这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。如果一个 channel 停滞了,但是 seletor 又监听到另一个 channel 的事件,就会通知线程处理。
适合连接数特别多,但流量低的场景(low traffic)。
1 2 3 4 5 6 7 graph TD subgraph selector 版 thread --> selector selector --> c1(channel) selector --> c2(channel) selector --> c3(channel) end
调用 selector 的 select() 会阻塞直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理。
ByteBuffer ByteBuffer 正确使用姿势
向 buffer 写入数据,例如调用 channel.read(buffer)
调用 flip() 切换至读模式
从 buffer 读取数据,例如调用 buffer.get()
调用 clear() 或 compact() 切换至写模式
重复 1~4 步骤
ByteBuffer 结构 ByteBuffer 有以下重要属性
capacity 容量
position 当前写入/读取位置
limit 写入限制/读取限制
一开始,处于写模式
写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态
flip 切换读模式后,position 切换为读取位置,一般是起始位置,limit 切换为读取限制,一般是切换前 position 写入位置
读取 4 个字节后,状态
clear 清空 buffer,postion 回到起始位置,limit 也切换为写入限制,此时 buffer 处于写模式
但如果 buffer 没有读完的话,clear 操作会导致未读数据丢失
compact 方法,是把未读完的部分向前压缩,然后切换至写模式
💡 调试工具类 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 import static io.netty.util.internal.MathUtil.isOutOfBounds;import static io.netty.util.internal.StringUtil.NEWLINE;public class ByteBufferUtil { private static final char [] BYTE2CHAR = new char [256 ]; private static final char [] HEXDUMP_TABLE = new char [256 * 4 ]; private static final String[] HEXPADDING = new String [16 ]; private static final String[] HEXDUMP_ROWPREFIXES = new String [65536 >>> 4 ]; private static final String[] BYTE2HEX = new String [256 ]; private static final String[] BYTEPADDING = new String [16 ]; static { final char [] DIGITS = "0123456789abcdef" .toCharArray(); for (int i = 0 ; i < 256 ; i++) { HEXDUMP_TABLE[i << 1 ] = DIGITS[i >>> 4 & 0x0F ]; HEXDUMP_TABLE[(i << 1 ) + 1 ] = DIGITS[i & 0x0F ]; } int i; for (i = 0 ; i < HEXPADDING.length; i++) { int padding = HEXPADDING.length - i; StringBuilder buf = new StringBuilder (padding * 3 ); for (int j = 0 ; j < padding; j++) { buf.append(" " ); } HEXPADDING[i] = buf.toString(); } for (i = 0 ; i < HEXDUMP_ROWPREFIXES.length; i++) { StringBuilder buf = new StringBuilder (12 ); buf.append(NEWLINE); buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L )); buf.setCharAt(buf.length() - 9 , '|' ); buf.append('|' ); HEXDUMP_ROWPREFIXES[i] = buf.toString(); } for (i = 0 ; i < BYTE2HEX.length; i++) { BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i); } for (i = 0 ; i < BYTEPADDING.length; i++) { int padding = BYTEPADDING.length - i; StringBuilder buf = new StringBuilder (padding); for (int j = 0 ; j < padding; j++) { buf.append(' ' ); } BYTEPADDING[i] = buf.toString(); } for (i = 0 ; i < BYTE2CHAR.length; i++) { if (i <= 0x1f || i >= 0x7f ) { BYTE2CHAR[i] = '.' ; } else { BYTE2CHAR[i] = (char ) i; } } } public static void debugAll (ByteBuffer buffer) { int oldlimit = buffer.limit(); buffer.limit(buffer.capacity()); StringBuilder origin = new StringBuilder (256 ); appendPrettyHexDump(origin, buffer, 0 , buffer.capacity()); System.out.println("+--------+-------------------- all ------------------------+----------------+" ); System.out.printf("position: [%d], limit: [%d]\n" , buffer.position(), oldlimit); System.out.println(origin); System.out.println(); buffer.limit(oldlimit); } public static void debugRead (ByteBuffer buffer) { StringBuilder builder = new StringBuilder (256 ); appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position()); System.out.println("+--------+-------------------- read -----------------------+----------------+" ); System.out.printf("position: [%d], limit: [%d]\n" , buffer.position(), buffer.limit()); System.out.println(builder); } private static void appendPrettyHexDump (StringBuilder dump, ByteBuffer buf, int offset, int length) { if (isOutOfBounds(offset, length, buf.capacity())) { throw new IndexOutOfBoundsException ( "expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length + ") <= " + "buf.capacity(" + buf.capacity() + ')' ); } if (length == 0 ) { return ; } dump.append( " +-------------------------------------------------+" + NEWLINE + " | 0 1 2 3 4 5 6 7 8 9 a b c d e f |" + NEWLINE + "+--------+-------------------------------------------------+----------------+" ); final int startIndex = offset; final int fullRows = length >>> 4 ; final int remainder = length & 0xF ; for (int row = 0 ; row < fullRows; row++) { int rowStartIndex = (row << 4 ) + startIndex; appendHexDumpRowPrefix(dump, row, rowStartIndex); int rowEndIndex = rowStartIndex + 16 ; for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2HEX[getUnsignedByte(buf, j)]); } dump.append(" |" ); for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]); } dump.append('|' ); } if (remainder != 0 ) { int rowStartIndex = (fullRows << 4 ) + startIndex; appendHexDumpRowPrefix(dump, fullRows, rowStartIndex); int rowEndIndex = rowStartIndex + remainder; for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2HEX[getUnsignedByte(buf, j)]); } dump.append(HEXPADDING[remainder]); dump.append(" |" ); for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]); } dump.append(BYTEPADDING[remainder]); dump.append('|' ); } dump.append(NEWLINE + "+--------+-------------------------------------------------+----------------+" ); } private static void appendHexDumpRowPrefix (StringBuilder dump, int row, int rowStartIndex) { if (row < HEXDUMP_ROWPREFIXES.length) { dump.append(HEXDUMP_ROWPREFIXES[row]); } else { dump.append(NEWLINE); dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L )); dump.setCharAt(dump.length() - 9 , '|' ); dump.append('|' ); } } public static short getUnsignedByte (ByteBuffer buffer, int index) { return (short ) (buffer.get(index) & 0xFF ); } }
ByteBuffer 常见方法 分配空间 可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 public class TestByteBufferAllocate { public static void main (String[] args) { System.out.println(ByteBuffer.allocate(10 ).getClass()); System.out.println(ByteBuffer.allocateDirect(10 ).getClass()); } }
向 buffer 写入数据 有两种办法
调用 channel 的 read 方法
调用 buffer 自己的 put 方法
1 2 int readBytes = channel.read(buf);buf.put((byte )127 );
从 buffer 读取数据 同样有两种办法
调用 channel 的 write 方法
调用 buffer 自己的 get 方法
1 2 int writeBytes = channel.write(buf);byte b = buf.get();
get 方法会让 position 读指针向后走,如果想重复读取数据
可以调用 rewind 方法将 position 重新置为 0
或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针
mark 和 reset mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置
注意
rewind 和 flip 都会清除 mark 位置
字符串与 ByteBuffer 互转 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 public class TestByteBufferString { public static void main (String[] args) { ByteBuffer byteBuffer= ByteBuffer.allocate(16 ); byteBuffer.put("hello" .getBytes()); debugAll(byteBuffer); ByteBuffer charsetBuffer = StandardCharsets.UTF_8.encode("hello" ); debugAll(charsetBuffer); ByteBuffer wrapBuffer = ByteBuffer.wrap("hello" .getBytes()); debugAll(wrapBuffer); String str1 = StandardCharsets.UTF_8.decode(charsetBuffer).toString(); System.out.println(str1); byteBuffer.flip(); String str2 = StandardCharsets.UTF_8.decode(byteBuffer).toString(); System.out.println(str2); } }
输出
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 +--------+-------------------- all ------------------------+----------------+ position: [5], limit : [16] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f 00 00 00 00 00 00 00 00 00 00 00 |hello...........| +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit : [5] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f |hello | +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit : [5] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f |hello | +--------+-------------------------------------------------+----------------+ hello hello
⚠️ Buffer 的线程安全 Buffer 是非线程安全的
Scattering Reads 分散读 分散读取,有一个文本文件 words.txt
使用如下方式读取,可以将数据填充至多个 buffer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 public class TestScatteringReads { public static void main (String[] args) { try (FileChannel channel = new RandomAccessFile ("demo-02/words.txt" , "r" ).getChannel()) { ByteBuffer buffer1 = ByteBuffer.allocate(3 ); ByteBuffer buffer2 = ByteBuffer.allocate(3 ); ByteBuffer buffer3 = ByteBuffer.allocate(5 ); channel.read(new ByteBuffer []{buffer1,buffer2,buffer3}); buffer1.flip(); buffer2.flip(); buffer3.flip(); debugAll(buffer1); debugAll(buffer2); debugAll(buffer3); } catch (IOException e) { } } }
结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 +--------+-------------------- all ------------------------+----------------+ position: [0], limit : [3] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 6f 6e 65 |one | +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit : [3] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 74 77 6f |two | +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit : [5] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 74 68 72 65 65 |three | +--------+-------------------------------------------------+----------------+
Gathering Writes 集中写 使用如下方式写入,可以将多个 buffer 的数据填充至 channel
1 2 3 4 5 6 7 8 9 10 11 12 13 public class TestGatheringWrites { public static void main (String[] args) { ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("hello" ); ByteBuffer buffer2 = StandardCharsets.UTF_8.encode("world" ); ByteBuffer buffer3 = StandardCharsets.UTF_8.encode("世界" ); try (FileChannel channel = new RandomAccessFile ("demo-02/words.txt" , "rw" ).getChannel()) { channel.position(11 ); channel.write(new ByteBuffer []{buffer1,buffer2,buffer3}); } catch (IOException e) { } } }
文件内容
练习:网络粘包半包问题 网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔 但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为
Hello,world\n
I’m Ray\n
How are you?\n
变成了下面的两个 byteBuffer
Hello,world\nI’m Ray\nHo 粘包 将多个数据囤积起来发送,提高效率
w are you?\n 半包 由于窗口或者缓冲区大小限制,无法一次发送太多数据,所以延迟到下一次发送
现在要求你编写程序,将错乱的数据恢复成原始的按 \n 分隔的数据
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 public class TestByteBufferExam { public static void main (String[] args) { ByteBuffer source = ByteBuffer.allocate(32 ); source.put("Hello,world\nI'm Ray\nHo" .getBytes()); split(source); source.put("w are you?\n" .getBytes()); split(source); } private static void split (ByteBuffer source) { source.flip(); for (int i = 0 ; i < source.limit(); i++) { if (source.get(i)=='\n' ){ int size = i - source.position() + 1 ; ByteBuffer target = ByteBuffer.allocate(size); for (int j = 0 ; j < size; j++) { target.put(source.get(j)); } debugAll(target); } } source.compact(); } }
结果
文件编程 FileChannel ⚠️ FileChannel 工作模式 FileChannel 只能工作在阻塞模式下
获取 不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法
通过 FileInputStream 获取的 channel 只能读
通过 FileOutputStream 获取的 channel 只能写
通过 RandomAccessFile 是否能读写根据构造 RandomAccessFile 时的读写模式决定
读取 会从 channel 读取数据填充 ByteBuffer,返回值表示读到了多少字节,-1 表示到达了文件的末尾
1 int readBytes = channel.read(buffer);
写入 1 2 3 4 5 6 7 ByteBuffer buffer = ...;buffer.put(...); buffer.flip(); while (buffer.hasRemaining()) { channel.write(buffer); }
在 while 中调用 channel.write 是因为 write 方法并不能保证一次将 buffer 中的内容全部写入 channel
关闭 channel 必须关闭,不过调用了 FileInputStream、FileOutputStream 或者 RandomAccessFile 的 close 方法会间接地调用 channel 的 close 方法
位置 获取当前位置
1 long pos = channel.position();
设置当前位置
1 2 long newPos = ...;channel.position(newPos);
设置当前位置时,如果设置为文件的末尾
这时读取会返回 -1
这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)
大小 使用 size 方法获取文件的大小
强制写入 操作系统出于性能的考虑,会将数据缓存,等到 channel 关闭后才写入磁盘,而不是写一次就立刻写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘。
两个 Channel 传输数据 1 2 3 4 5 6 7 8 9 10 11 12 13 public class TestChannelTransferTo { public static void main (String[] args) { try ( FileChannel from = new FileInputStream ("demo-02/data.txt" ).getChannel(); FileChannel to = new FileOutputStream ("demo-02/to.txt" ).getChannel(); ) { from.transferTo(0 ,from.size(),to); } catch (IOException e) { e.printStackTrace(); } } }
超过 2G 数据大小的文件传输
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 public class TestChannelTransferTo { public static void main (String[] args) { try ( FileChannel from = new FileInputStream ("demo-02/data.txt" ).getChannel(); FileChannel to = new FileOutputStream ("demo-02/to.txt" ).getChannel(); ) { long size = from.size(); for (long left = size;left>0 ;){ left -= from.transferTo((size - left), left,to); } } catch (IOException e) { e.printStackTrace(); } } }
Path JDK7 引入了 Path 和 Paths 类
Path 用来表示文件路径
Paths 是工具类,用来获取 Path 实例
1 2 3 4 5 6 7 Path source = Paths.get("1.txt" ); Path source = Paths.get("d:\\1.txt" ); Path source = Paths.get("d:/1.txt" ); Path projects = Paths.get("d:\\data" , "projects" );
例如目录结构如下
1 2 3 4 5 d: |- data |- projects |- a |- b
代码
1 2 3 Path path = Paths.get("d:\\data\\projects\\a\\..\\b" );System.out.println(path); System.out.println(path.normalize());
输出
1 2 d:\data\projects\a\..\b d:\data\projects\b
Files 检查文件是否存在
1 2 Path path = Paths.get("helloword/data.txt" );System.out.println(Files.exists(path));
创建一级目录
1 2 Path path = Paths.get("helloword/d1" );Files.createDirectory(path);
如果目录已存在,会抛异常 FileAlreadyExistsException
不能一次创建多级目录,否则会抛异常 NoSuchFileException
创建多级目录用
1 2 Path path = Paths.get("helloword/d1/d2" );Files.createDirectories(path);
拷贝文件
1 2 3 4 Path source = Paths.get("helloword/data.txt" );Path target = Paths.get("helloword/target.txt" );Files.copy(source, target);
如果文件已存在,会抛异常 FileAlreadyExistsException
如果希望用 source 覆盖掉 target,需要用 StandardCopyOption 来控制
1 Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);
移动文件
1 2 3 4 Path source = Paths.get("helloword/data.txt" );Path target = Paths.get("helloword/data.txt" );Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);
StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性
删除文件
1 2 3 Path target = Paths.get("helloword/target.txt" );Files.delete(target);
如果文件不存在,会抛异常 NoSuchFileException
删除目录
1 2 3 Path target = Paths.get("helloword/d1" );Files.delete(target);
如果目录还有内容,会抛异常 DirectoryNotEmptyException
遍历目录文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 private static void func1 () throws IOException { AtomicInteger dirCount = new AtomicInteger (); AtomicInteger fileCount = new AtomicInteger (); Files.walkFileTree(Paths.get("/Users/ray/goland/sdk/go1.18" ),new SimpleFileVisitor <Path>(){ @Override public FileVisitResult preVisitDirectory (Path dir, BasicFileAttributes attrs) throws IOException { System.out.println("===>" +dir); dirCount.incrementAndGet(); return super .preVisitDirectory(dir, attrs); } @Override public FileVisitResult visitFile (Path file, BasicFileAttributes attrs) throws IOException { System.out.println(file); fileCount.incrementAndGet(); return super .visitFile(file, attrs); } }); System.out.println("dirCount : " + dirCount); System.out.println("fileCount : " + fileCount); }
统计 .go 文件数目
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 private static void fun2 () throws IOException { AtomicInteger goCount = new AtomicInteger (); Files.walkFileTree(Paths.get("/Users/ray/goland/sdk/go1.18" ),new SimpleFileVisitor <Path>(){ @Override public FileVisitResult visitFile (Path file, BasicFileAttributes attrs) throws IOException { if (file.toString().endsWith(".go" )) { System.out.println(file); goCount.incrementAndGet(); } return super .visitFile(file, attrs); } }); System.out.println("goCount : " + goCount); }
删除多级目录
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 private static void func3 () throws IOException { Files.walkFileTree(Paths.get("Path" ),new SimpleFileVisitor <Path>(){ @Override public FileVisitResult preVisitDirectory (Path dir, BasicFileAttributes attrs) throws IOException { System.out.println("===> 进入" + dir); return super .preVisitDirectory(dir, attrs); } @Override public FileVisitResult visitFile (Path file, BasicFileAttributes attrs) throws IOException { System.out.println(file); Files.delete(file); return super .visitFile(file, attrs); } @Override public FileVisitResult postVisitDirectory (Path dir, IOException exc) throws IOException { System.out.println("===> 退出" + dir); Files.delete(dir); return super .postVisitDirectory(dir, exc); } }); }
拷贝多级目录
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 public class TestFilesCopy { public static void main (String[] args) throws IOException { long start = System.currentTimeMillis(); String source = "D:\\source" ; String target = "D:\\target" ; Files.walk(Paths.get(source)).forEach(path -> { try { String targetName = path.toString().replace(source, target); if (Files.isDirectory(path)) { Files.createDirectory(Paths.get(targetName)); } else if (Files.isRegularFile(path)) { Files.copy(path, Paths.get(targetName)); } } catch (IOException e) { e.printStackTrace(); } }); long end = System.currentTimeMillis(); System.out.println(end - start); } }
网络编程 Socket编程
阻塞 vs 非阻塞 阻塞
服务端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 @Slf4j public class Server { public static void main (String[] args) throws IOException { ByteBuffer buffer = ByteBuffer.allocate(16 ); ServerSocketChannel server = ServerSocketChannel.open(); server.bind(new InetSocketAddress (8080 )); List<SocketChannel> channelList = new ArrayList <>(); while (true ) { log.debug("connecting..." ); SocketChannel socket = server.accept(); log.debug("connected... {}" ,socket); channelList.add(socket); for (SocketChannel channel : channelList){ log.debug("before read... {}" ,socket); channel.read(buffer); buffer.flip(); debugRead(buffer); buffer.clear(); log.debug("after read... {}" ,channel); } } } }
客户端
1 2 3 4 5 6 7 8 public class Client { public static void main (String[] args) throws IOException { SocketChannel socket = SocketChannel.open(); socket.connect(new InetSocketAddress ("localhost" ,8080 )); System.out.println("waiting..." ); } }
非阻塞
服务端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 @Slf4j public class Server { public static void main (String[] args) throws IOException { ByteBuffer buffer = ByteBuffer.allocate(16 ); ServerSocketChannel server = ServerSocketChannel.open(); server.configureBlocking(false ); server.bind(new InetSocketAddress (8080 )); List<SocketChannel> channelList = new ArrayList <>(); while (true ) { SocketChannel socket = server.accept(); if (socket!=null ) { log.debug("connected... {}" ,socket); socket.configureBlocking(false ); channelList.add(socket); } for (SocketChannel channel : channelList){ int read = channel.read(buffer); if (read > 0 ) { buffer.flip(); debugRead(buffer); buffer.clear(); log.debug("after read... {}" ,channel); } } } } }
客户端代码不变
多路复用 单线程可以配合 Selector 完成对多个 Channel 可读写事件的监控,这称之为多路复用
Selector 1 2 3 4 5 6 7 graph TD subgraph selector 版 thread --> selector selector --> c1(channel) selector --> c2(channel) selector --> c3(channel) end
好处
一个线程配合 selector 就可以监控多个 channel 的事件,事件发生线程才去处理。避免非阻塞模式下所做无用功
让这个线程能够被充分利用
节约了线程的数量
减少了线程上下文切换
创建 1 Selector selector = Selector.open();
绑定 Channel 事件 也称之为注册事件,绑定的事件 selector 才会关心
1 2 channel.configureBlocking(false ); SelectionKey key = channel.register(selector, 绑定事件);
channel 必须工作在非阻塞模式
FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用
绑定的事件类型可以有
connect - 客户端连接成功时触发
accept - 服务器端成功接受连接请求时触发
read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况
write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况
监听 Channel 事件 可以通过下面三种方法来监听是否有事件发生,方法的返回值代表有多少 channel 发生了事件
方法1:阻塞直到绑定事件发生
1 int count = selector.select();
方法2:阻塞直到绑定事件发生,或是超时(时间单位为 ms)
1 int count = selector.select(long timeout);
方法3:不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件
1 int count = selector.selectNow();
💡 select 何时不阻塞
事件发生时
客户端发起连接请求,会触发 accept 事件
客户端发送数据过来,客户端正常、异常关闭时,都会触发 read 事件,另外如果发送的数据大于 buffer 缓冲区,会触发多次读取事件
channel 可写,会触发 write 事件
在 linux 下 nio bug 发生时
调用 selector.wakeup()
调用 selector.close()
selector 所在线程 interrupt
处理 accept 事件 服务端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 @Slf4j public class Server { public static void main (String[] args) throws IOException { Selector selector = Selector.open(); ServerSocketChannel server = ServerSocketChannel.open(); server.configureBlocking(false ); SelectionKey serverKey = server.register(selector, 0 , null ); serverKey.interestOps(SelectionKey.OP_ACCEPT); log.debug("register key {}" ,serverKey); server.bind(new InetSocketAddress (8080 )); while (true ) { selector.select(); Iterator<SelectionKey> keys = selector.selectedKeys().iterator(); while (keys.hasNext()){ SelectionKey key = keys.next(); log.debug("key {}" ,key); ServerSocketChannel channel = (ServerSocketChannel) key.channel(); SocketChannel socketChannel = channel.accept(); log.debug("{}" ,socketChannel); } } } }
客户端
1 2 3 4 5 6 7 8 public class Client { public static void main (String[] args) throws IOException { SocketChannel socket = SocketChannel.open(); socket.connect(new InetSocketAddress ("localhost" ,8080 )); System.out.println("waiting..." ); } }
💡 事件发生后能否不处理 事件发生后,要么处理,要么取消(cancel),不能什么都不做,否则下次该事件仍会触发,这是因为 NIO 底层使用的是水平触发
处理 read 事件 服务端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 @Slf4j public class Server { public static void main (String[] args) throws IOException { Selector selector = Selector.open(); ServerSocketChannel server = ServerSocketChannel.open(); server.configureBlocking(false ); SelectionKey serverKey = server.register(selector, 0 , null ); serverKey.interestOps(SelectionKey.OP_ACCEPT); log.debug("register key {}" ,serverKey); server.bind(new InetSocketAddress (8080 )); while (true ) { selector.select(); Iterator<SelectionKey> keys = selector.selectedKeys().iterator(); while (keys.hasNext()){ SelectionKey key = keys.next(); log.debug("key {}" ,key); if (key.isAcceptable()) { ServerSocketChannel channel = (ServerSocketChannel) key.channel(); SocketChannel socketChannel = channel.accept(); socketChannel.configureBlocking(false ); SelectionKey socketKey = socketChannel.register(selector, 0 , null ); socketKey.interestOps(SelectionKey.OP_READ); log.debug("{}" ,socketChannel); } else if (key.isReadable()){ SocketChannel channel = (SocketChannel) key.channel(); ByteBuffer buffer = ByteBuffer.allocate(16 ); channel.read(buffer); buffer.flip(); debugRead(buffer); } keys.remove(); } } } }
客户端不变
开启两个客户端,修改一下发送文字,输出
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 19:47:25 [DEBUG] [main] c.n.d.nio.Server - register key sun.nio.ch.SelectionKeyImpl@4fccd51b 19:47:42 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@4fccd51b 19:47:42 [DEBUG] [main] c.n.d.nio.Server - java.nio.channels.SocketChannel[connected local =/127.0.0.1:8080 remote=/127.0.0.1:58800] 19:48:06 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@4fccd51b 19:48:06 [DEBUG] [main] c.n.d.nio.Server - java.nio.channels.SocketChannel[connected local =/127.0.0.1:8080 remote=/127.0.0.1:58805] 19:48:20 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@1c2c22f3 +--------+-------------------- read -----------------------+----------------+ position: [0], limit : [6] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f 21 |hello! | +--------+-------------------------------------------------+----------------+ 19:48:34 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@1c2c22f3 +--------+-------------------- read -----------------------+----------------+ position: [0], limit : [6] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 77 6f 72 6c 64 21 |world! | +--------+-------------------------------------------------+----------------+
💡 为何要 keys.remove() 因为 select 在事件发生后,就会将相关的 key 放入 selectedKeys 集合,但不会在处理完后从 selectedKeys 集合中移除,需要我们自己编码删除。例如
第一次触发了 serverkey 上的 accept 事件,处理完事件之后将 对应 channel 的 accept 事件移除,但并没有移除 serverkey
第二次触发了 socketkey 上的 read 事件,但这时 selectedKeys 中还有上次的 serverkey ,在处理时因为没有真正的 serverSocket 连上了,就会导致空指针异常
.png)
💡 cancel 的作用 cancel 会取消注册在 selector 上的 channel,并从 keys 集合中删除 key 后续不会再监听事件
⚠️ 不处理边界的问题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 @Slf4j public class Server { public static void main (String[] args) throws IOException { Selector selector = Selector.open(); ServerSocketChannel server = ServerSocketChannel.open(); server.configureBlocking(false ); SelectionKey serverKey = server.register(selector, 0 , null ); serverKey.interestOps(SelectionKey.OP_ACCEPT); log.debug("server key {}" ,serverKey); server.bind(new InetSocketAddress (8080 )); while (true ) { selector.select(); Iterator<SelectionKey> keys = selector.selectedKeys().iterator(); while (keys.hasNext()){ SelectionKey key = keys.next(); log.debug("key {}" ,key); if (key.isAcceptable()) { ServerSocketChannel channel = (ServerSocketChannel) key.channel(); SocketChannel socketChannel = channel.accept(); socketChannel.configureBlocking(false ); SelectionKey socketKey = socketChannel.register(selector, 0 , null ); socketKey.interestOps(SelectionKey.OP_READ); log.debug("{}" ,socketChannel); log.debug("socketKey {}" ,socketKey); } else if (key.isReadable()){ try { SocketChannel channel = (SocketChannel) key.channel(); ByteBuffer buffer = ByteBuffer.allocate(4 ); int read = channel.read(buffer); if (read==-1 ){ key.cancel(); } else { buffer.flip(); System.out.println(StandardCharsets.UTF_8.decode(buffer)); } } catch (IOException e) { e.printStackTrace(); key.cancel(); } } keys.remove(); } } } }
hi 正常输出
hello 被拆分 hell o
中文乱码且被拆分为多个部分
处理消息的边界
1 2 3 4 5 6 7 8 9 10 11 sequenceDiagram participant c1 as 客户端1 participant s as 服务器 participant b1 as ByteBuffer1 participant b2 as ByteBuffer2 c1 ->> s: 发送 01234567890abcdefray\n s ->> b1: 第一次 read 存入 01234567890abcdef s ->> b2: 扩容 b1 ->> b2: 拷贝 01234567890abcdef s ->> b2: 第二次 read 存入 ray\n b2 ->> b2: 01234567890abcdefray\n
服务端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 @Slf4j public class Server { public static void main (String[] args) throws IOException { Selector selector = Selector.open(); ServerSocketChannel server = ServerSocketChannel.open(); server.configureBlocking(false ); SelectionKey serverKey = server.register(selector, 0 , null ); serverKey.interestOps(SelectionKey.OP_ACCEPT); log.debug("server key {}" ,serverKey); server.bind(new InetSocketAddress (8080 )); while (true ) { selector.select(); Iterator<SelectionKey> keys = selector.selectedKeys().iterator(); while (keys.hasNext()){ SelectionKey key = keys.next(); log.debug("key {}" ,key); if (key.isAcceptable()) { ServerSocketChannel channel = (ServerSocketChannel) key.channel(); SocketChannel socketChannel = channel.accept(); socketChannel.configureBlocking(false ); ByteBuffer buffer = ByteBuffer.allocate(16 ); SelectionKey socketKey = socketChannel.register(selector, 0 , buffer); socketKey.interestOps(SelectionKey.OP_READ); log.debug("{}" ,socketChannel); log.debug("socketKey {}" ,socketKey); } else if (key.isReadable()){ try { ByteBuffer buffer = (ByteBuffer) key.attachment(); SocketChannel channel = (SocketChannel) key.channel(); int read = channel.read(buffer); if (read==-1 ){ key.cancel(); } else { split(buffer); if (buffer.position() == buffer.limit()){ ByteBuffer newBuffer = ByteBuffer.allocate(buffer.capacity() * 2 ); buffer.flip(); newBuffer.put(buffer); key.attach(newBuffer); } } } catch (IOException e) { e.printStackTrace(); key.cancel(); } } keys.remove(); } } } private static void split (ByteBuffer source) { source.flip(); for (int i = 0 ; i < source.limit(); i++) { if (source.get(i)=='\n' ){ int size = i - source.position() + 1 ; ByteBuffer target = ByteBuffer.allocate(size); for (int j = 0 ; j < size; j++) { target.put(source.get()); } debugAll(target); } } source.compact(); } }
客户端
1 2 3 4 5 6 7 8 9 10 public class Client { public static void main (String[] args) throws IOException { SocketChannel socket = SocketChannel.open(); socket.connect(new InetSocketAddress ("localhost" ,8080 )); socket.write(StandardCharsets.UTF_8.encode("this is a test data\ndon't reply" )); socket.write(StandardCharsets.UTF_8.encode("01234567890abcdefray\n" )); System.in.read(); } }
输出
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 08:47:27 [DEBUG] [main] c.n.d.nio.Server - server key sun.nio.ch.SelectionKeyImpl@4fccd51b 08:47:32 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@4fccd51b 08:47:32 [DEBUG] [main] c.n.d.nio.Server - java.nio.channels.SocketChannel[connected local =/127.0.0.1:8080 remote=/127.0.0.1:61474] 08:47:32 [DEBUG] [main] c.n.d.nio.Server - socketKey sun.nio.ch.SelectionKeyImpl@1c2c22f3 08:47:32 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@1c2c22f3 08:47:32 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@1c2c22f3 +--------+-------------------- all ------------------------+----------------+ position: [20], limit : [20] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 74 68 69 73 20 69 73 20 61 20 74 65 73 74 20 64 |this is a test d| |00000010| 61 74 61 0a |ata. | +--------+-------------------------------------------------+----------------+ 08:47:32 [DEBUG] [main] c.n.d.nio.Server - key sun.nio.ch.SelectionKeyImpl@1c2c22f3 +--------+-------------------- all ------------------------+----------------+ position: [32], limit : [32] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 64 6f 6e 27 74 20 72 65 70 6c 79 30 31 32 33 34 |don't reply01234| |00000010| 35 36 37 38 39 30 61 62 63 64 65 66 72 61 79 0a |567890abcdefray.| +--------+-------------------------------------------------+----------------+
ByteBuffer 大小分配
每个 channel 都需要记录可能被切分的消息,因为 ByteBuffer 不能被多个 channel 共同使用,会造成数据杂乱冲突,因此需要为每个 channel 维护一个独立的 ByteBuffer。
1 2 ByteBuffer buffer = ByteBuffer.allocate(16 ); SelectionKey socketKey = socketChannel.register(selector, 0 , buffer);
处理 write 事件 一次无法写完例子
服务端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 public class WriteServer { public static void main (String[] args) throws IOException { ServerSocketChannel server = ServerSocketChannel.open(); server.configureBlocking(false ); server.bind(new InetSocketAddress (8080 )); Selector selector = Selector.open(); server.register(selector, SelectionKey.OP_ACCEPT); while (true ){ selector.select(); Iterator<SelectionKey> keys = selector.selectedKeys().iterator(); while (keys.hasNext()) { SelectionKey key = keys.next(); keys.remove(); if (key.isAcceptable()){ SocketChannel socket = server.accept(); socket.configureBlocking(false ); SelectionKey socketKey = socket.register(selector, SelectionKey.OP_READ); StringBuilder sb = new StringBuilder (); for (int i = 0 ; i < 500000 ; i++) { sb.append("a" ); } ByteBuffer buffer = StandardCharsets.UTF_8.encode(sb.toString()); int write = socket.write(buffer); System.out.println("第一次写入 " + write); if (buffer.hasRemaining()){ socketKey.interestOps(socketKey.interestOps() + SelectionKey.OP_WRITE); socketKey.attach(buffer); } } else if (key.isWritable()){ ByteBuffer buffer = (ByteBuffer) key.attachment(); SocketChannel socket = (SocketChannel) key.channel(); int write = socket.write(buffer); System.out.println("可写事件中写入 " + write); if (!buffer.hasRemaining()){ key.attach(null ); key.interestOps(key.interestOps() - SelectionKey.OP_WRITE); } } } } } }
客户端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 public class WriteClient { public static void main (String[] args) throws IOException { SocketChannel socket = SocketChannel.open(); socket.connect(new InetSocketAddress ("localhost" ,8080 )); int count = 0 ; while (true ){ ByteBuffer buffer = ByteBuffer.allocate(1024 *1024 ); count += socket.read(buffer); System.out.println(count); buffer.clear(); } } }
💡 write 为何要取消 只要向 channel 发送数据时,socket 缓冲可写,这个事件会频繁触发(相当于长连接?),因此应当只在 socket 缓冲区写不下时再关注可写事件,数据写完之后再取消关注
更进一步 💡 利用多线程优化 现在都是多核 cpu,设计时要充分考虑别让 cpu 的力量被白白浪费
前面的代码只有一个选择器,没有充分利用多核 cpu,如何改进呢?
分两组选择器
单线程配一个选择器,专门处理 accept 事件
创建 cpu 核心数的线程,每个线程配一个选择器,轮流处理 read 事件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 @Slf4j public class MultiThreadServer { public static void main (String[] args) throws IOException { Thread.currentThread().setName("Boss" ); ServerSocketChannel server = ServerSocketChannel.open(); server.bind(new InetSocketAddress (8080 )); server.configureBlocking(false ); Selector boss = Selector.open(); SelectionKey bossKey = server.register(boss, SelectionKey.OP_ACCEPT); Worker worker = new Worker ("worker1" ); while (true ) { boss.select(); Iterator<SelectionKey> keys = boss.selectedKeys().iterator(); while (keys.hasNext()) { SelectionKey key = keys.next(); keys.remove(); if (key.isAcceptable()){ SocketChannel socket = server.accept(); socket.configureBlocking(false ); log.debug("connected... {}" ,socket.getRemoteAddress()); log.debug("before register... {}" ,socket.getRemoteAddress()); worker.register(socket); log.debug("after register... {}" ,socket.getRemoteAddress()); } } } } static class Worker implements Runnable { private Thread thread; private Selector selector; private String name; private AtomicBoolean register = new AtomicBoolean (); private ConcurrentLinkedQueue<Runnable> queue = new ConcurrentLinkedQueue <>(); public Worker (String name) throws IOException { this .name = name; } private void register (SocketChannel socket) throws IOException { if (!register.get()) { thread = new Thread (this ); selector = Selector.open(); thread.start(); register.set(true ); } queue.add(()->{ try { socket.register(selector,SelectionKey.OP_READ,null ); } catch (ClosedChannelException e) { e.printStackTrace(); } }); selector.wakeup(); } @Override public void run () { while (true ) { try { selector.select(); Runnable task = queue.poll(); if (task!=null ){ task.run(); } Iterator<SelectionKey> keys = selector.selectedKeys().iterator(); while (keys.hasNext()) { SelectionKey key = keys.next(); keys.remove(); if (key.isReadable()){ SocketChannel socket = (SocketChannel) key.channel(); socket.configureBlocking(false ); log.debug("read... {}" ,socket.getRemoteAddress()); ByteBuffer buffer = ByteBuffer.allocate(16 ); socket.read(buffer); buffer.flip(); debugAll(buffer); } } } catch (IOException e) { e.printStackTrace(); } } } } }
这里需要注意的是
如何保证 一个 worker 对应 一个 thread?
利用 原子类 做验证使其在方法中只执行一次。
1 2 3 4 5 6 7 8 9 10 private AtomicBoolean register = new AtomicBoolean ();if (!register.get()) { thread = new Thread (this ); selector = Selector.open(); thread.start(); register.set(true ); }
如何关联 worker 的 selector?
如果一开始 worker.register 就 thread.start ,那么在 selector.select(); 没有事件发生,worker 线程阻塞,boss 线程也就无法执行 socket.register(selector,SelectionKey.OP_READ,null);
需要改变其执行顺序。
这里利用 延迟队列 来实现线程间通信,并通过 wakeup 唤醒线程
1 2 3 4 5 6 7 8 9 10 11 12 13 private ConcurrentLinkedQueue<Runnable> queue = new ConcurrentLinkedQueue <>();queue.add(()->{ try { socket.register(selector,SelectionKey.OP_READ,null ); } catch (ClosedChannelException e) { e.printStackTrace(); } }); selector.wakeup();
也可以直接使用 wakeup
1 2 3 selector.wakeup(); socket.register(selector,SelectionKey.OP_READ,null );
💡 如何拿到 cpu 个数
Runtime.getRuntime().availableProcessors() 如果工作在 docker 容器下,因为容器不是物理隔离的,会拿到物理 cpu 个数,而不是容器申请时的个数
这个问题直到 jdk 10 才修复,使用 jvm 参数 UseContainerSupport 配置, 默认开启
服务端最终版
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 package com.netty.demo02.nio;import lombok.extern.slf4j.Slf4j;import java.io.IOException;import java.net.InetSocketAddress;import java.nio.ByteBuffer;import java.nio.channels.*;import java.util.Iterator;import java.util.concurrent.ConcurrentLinkedQueue;import java.util.concurrent.atomic.AtomicBoolean;import java.util.concurrent.atomic.AtomicInteger;import static com.netty.demo02.bytebuffer.ByteBufferUtil.debugAll;@Slf4j public class MultiThreadServer { public static void main (String[] args) throws IOException { Thread.currentThread().setName("Boss" ); ServerSocketChannel server = ServerSocketChannel.open(); server.bind(new InetSocketAddress (8080 )); server.configureBlocking(false ); Selector boss = Selector.open(); SelectionKey bossKey = server.register(boss, SelectionKey.OP_ACCEPT); Worker[] workers = new Worker [Runtime.getRuntime().availableProcessors()]; for (int i = 0 ; i < workers.length; i++) { workers[i] = new Worker ("worker-" + i); } AtomicInteger index = new AtomicInteger (); while (true ) { boss.select(); Iterator<SelectionKey> keys = boss.selectedKeys().iterator(); while (keys.hasNext()) { SelectionKey key = keys.next(); keys.remove(); if (key.isAcceptable()){ SocketChannel socket = server.accept(); socket.configureBlocking(false ); log.debug("connected... {}" ,socket.getRemoteAddress()); log.debug("before register... {}" ,socket.getRemoteAddress()); workers[index.getAndIncrement() % workers.length].register(socket); log.debug("after register... {}" ,socket.getRemoteAddress()); } } } } static class Worker implements Runnable { private Thread thread; private Selector selector; private String name; private AtomicBoolean register = new AtomicBoolean (); private ConcurrentLinkedQueue<Runnable> queue = new ConcurrentLinkedQueue <>(); public Worker (String name) throws IOException { this .name = name; } private void register (SocketChannel socket) throws IOException { if (!register.get()) { thread = new Thread (this ); selector = Selector.open(); thread.start(); register.set(true ); } queue.add(()->{ try { socket.register(selector,SelectionKey.OP_READ,null ); } catch (ClosedChannelException e) { e.printStackTrace(); } }); selector.wakeup(); } @Override public void run () { Thread.currentThread().setName(name); while (true ) { try { selector.select(); Runnable task = queue.poll(); if (task!=null ){ task.run(); } Iterator<SelectionKey> keys = selector.selectedKeys().iterator(); while (keys.hasNext()) { SelectionKey key = keys.next(); keys.remove(); if (key.isReadable()){ SocketChannel socket = (SocketChannel) key.channel(); socket.configureBlocking(false ); log.debug("read... {}" ,socket.getRemoteAddress()); ByteBuffer buffer = ByteBuffer.allocate(16 ); socket.read(buffer); buffer.flip(); debugAll(buffer); } } } catch (IOException e) { e.printStackTrace(); } } } } }
UDP 服务端
1 2 3 4 5 6 7 8 9 10 11 12 13 14 public class UDPServer { public static void main (String[] args) throws IOException { try (DatagramChannel channel= DatagramChannel.open()) { channel.socket().bind(new InetSocketAddress (9999 )); System.out.println("waiting..." ); ByteBuffer buffer = ByteBuffer.allocate(32 ); channel.receive(buffer); buffer.flip(); debugAll(buffer); } catch (IOException e) { e.printStackTrace(); } } }
客户端
1 2 3 4 5 6 7 8 9 10 11 public class UDPClient { public static void main (String[] args) throws IOException { try (DatagramChannel channel = DatagramChannel.open()) { ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello" ); InetSocketAddress address = new InetSocketAddress ("localhost" ,9999 ); channel.send(buffer,address); } catch (IOException e) { e.printStackTrace(); } } }
NIO vs BIO vs AIO stream vs channel
stream 不会自动缓冲数据,channel 会利用系统提供的发送缓冲区、接收缓冲区(更为底层)
stream 仅支持阻塞 API,channel 同时支持阻塞、非阻塞 API,网络 channel 可配合 selector 实现多路复用
二者均为全双工,即读写可以同时进行
IO 模型 同步阻塞、同步非阻塞、同步多路复用、异步阻塞(没有此情况)、异步非阻塞
同步:线程自己去获取结果(一个线程)
异步:线程自己不去获取结果,而是由其它线程送结果(至少两个线程)
当调用一次 channel.read 或 stream.read 后,会切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:
阻塞 IO
非阻塞 IO
多路复用
异步 IO
阻塞 IO vs 多路复用
零拷贝 传统 IO 问题 传统的 IO 将一个文件通过 socket 写出
1 2 3 4 5 6 7 8 File f = new File ("helloword/data.txt" );RandomAccessFile file = new RandomAccessFile (file, "r" );byte [] buf = new byte [(int )f.length()];file.read(buf); Socket socket = ...;socket.getOutputStream().write(buf);
内部工作流程是这样的:
java 本身并不具备 IO 读写能力,因此 read 方法调用后,要从 java 程序的用户态 切换至内核态 ,去调用操作系统(Kernel)的读能力,将数据读入内核缓冲区 。这期间用户线程阻塞,操作系统使用 DMA(Direct Memory Access)来实现文件读,其间也不会使用 CPU
DMA 也可以理解为硬件单元,用来解放 CPU 完成文件 IO
从内核态 切换回用户态 ,将数据从内核缓冲区 读入用户缓冲区 (即 byte[] buf),这期间 CPU 会参与拷贝,无法利用 DMA
调用 write 方法,这时将数据从用户缓冲区 (byte[] buf)写入 socket 缓冲区 ,CPU 会参与拷贝
接下来要向网卡写数据,这项能力 java 又不具备,因此又得从用户态 切换至内核态 ,调用操作系统的写能力,使用 DMA 将 socket 缓冲区 的数据写入网卡,不会使用 CPU
可以看到中间环节较多,java 的 IO 实际不是物理设备级别的读写,而是缓存的复制,底层的真正读写是操作系统来完成的
用户态与内核态的切换发生了 3 次,这个操作比较重量级
数据拷贝了共 4 次
NIO 优化 通过 DirectByteBuf
ByteBuffer.allocate(10) HeapByteBuffer 使用的还是 java 内存
ByteBuffer.allocateDirect(10) DirectByteBuffer 使用的是操作系统内存
大部分步骤与优化前相同,不再赘述。唯有一点:java 可以使用 DirectByteBuf 将堆外内存映射到 jvm 内存中来直接访问使用
进一步优化(底层采用了 linux 2.1 后提供的 sendFile 方法),java 中对应着两个 channel 调用 transferTo/transferFrom 方法拷贝数据
java 调用 transferTo 方法后,要从 java 程序的用户态 切换至内核态 ,使用 DMA 将数据读入内核缓冲区 ,不会使用 CPU
数据从内核缓冲区 传输到 socket 缓冲区 ,CPU 会参与拷贝
最后使用 DMA 将 socket 缓冲区 的数据写入网卡,不会使用 CPU
可以看到
只发生了一次用户态与内核态的切换
数据拷贝了 3 次
进一步优化(linux 2.4)
java 调用 transferTo 方法后,要从 java 程序的用户态 切换至内核态 ,使用 DMA 将数据读入内核缓冲区 ,不会使用 CPU
只会将一些 offset 和 length 信息拷入 socket 缓冲区 ,几乎无消耗
使用 DMA 将 内核缓冲区 的数据写入网卡,不会使用 CPU
整个过程仅只发生了一次用户态与内核态的切换,数据拷贝了 2 次。所谓的【零拷贝】,并不是真正无拷贝,而是不会拷贝重复数据到 jvm 内存中,零拷贝的优点有
更少的用户态与内核态的切换
不利用 CPU 计算,减少 CPU 缓存伪共享
零拷贝适合小文件传输
AIO AIO 用来解决数据复制阶段的阻塞问题
同步意味着,在进行读写操作时,线程需要等待结果,还是相当于闲置
异步意味着,在进行读写操作时,线程不必等待结果,而是将来由操作系统来通过回调方式由另外的线程来获得结果
异步模型需要底层操作系统(Kernel)提供支持
Windows 系统通过 IOCP 实现了真正的异步 IO
Linux 系统异步 IO 在 2.6 版本引入,但其底层实现还是用多路复用模拟了异步 IO,性能没有优势
文件 AIO 先来看看 AsynchronousFileChannel
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 @Slf4j public class AioDemo1 { public static void main (String[] args) throws IOException { try { AsynchronousFileChannel s = AsynchronousFileChannel.open( Paths.get("1.txt" ), StandardOpenOption.READ); ByteBuffer buffer = ByteBuffer.allocate(2 ); log.debug("begin..." ); s.read(buffer, 0 , null , new CompletionHandler <Integer, ByteBuffer>() { @Override public void completed (Integer result, ByteBuffer attachment) { log.debug("read completed...{}" , result); buffer.flip(); debug(buffer); } @Override public void failed (Throwable exc, ByteBuffer attachment) { log.debug("read failed..." ); } }); } catch (IOException e) { e.printStackTrace(); } log.debug("do other things..." ); System.in.read(); } }
输出
1 2 3 4 5 6 7 8 13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - begin... 13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - do other things... 13:44:56 [DEBUG] [Thread-5] c.i.aio.AioDemo1 - read completed...2 +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 61 0d |a. | +--------+-------------------------------------------------+----------------+
可以看到
响应文件读取成功的是另一个线程 Thread-5
主线程并没有 IO 操作阻塞
💡 守护线程 默认文件 AIO 使用的线程都是守护线程,所以最后要执行 System.in.read()
以避免守护线程意外结束
网络 AIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 public class AioServer { public static void main (String[] args) throws IOException { AsynchronousServerSocketChannel ssc = AsynchronousServerSocketChannel.open(); ssc.bind(new InetSocketAddress (8080 )); ssc.accept(null , new AcceptHandler (ssc)); System.in.read(); } private static void closeChannel (AsynchronousSocketChannel sc) { try { System.out.printf("[%s] %s close\n" , Thread.currentThread().getName(), sc.getRemoteAddress()); sc.close(); } catch (IOException e) { e.printStackTrace(); } } private static class ReadHandler implements CompletionHandler <Integer, ByteBuffer> { private final AsynchronousSocketChannel sc; public ReadHandler (AsynchronousSocketChannel sc) { this .sc = sc; } @Override public void completed (Integer result, ByteBuffer attachment) { try { if (result == -1 ) { closeChannel(sc); return ; } System.out.printf("[%s] %s read\n" , Thread.currentThread().getName(), sc.getRemoteAddress()); attachment.flip(); System.out.println(Charset.defaultCharset().decode(attachment)); attachment.clear(); sc.read(attachment, attachment, this ); } catch (IOException e) { e.printStackTrace(); } } @Override public void failed (Throwable exc, ByteBuffer attachment) { closeChannel(sc); exc.printStackTrace(); } } private static class WriteHandler implements CompletionHandler <Integer, ByteBuffer> { private final AsynchronousSocketChannel sc; private WriteHandler (AsynchronousSocketChannel sc) { this .sc = sc; } @Override public void completed (Integer result, ByteBuffer attachment) { if (attachment.hasRemaining()) { sc.write(attachment); } } @Override public void failed (Throwable exc, ByteBuffer attachment) { exc.printStackTrace(); closeChannel(sc); } } private static class AcceptHandler implements CompletionHandler <AsynchronousSocketChannel, Object> { private final AsynchronousServerSocketChannel ssc; public AcceptHandler (AsynchronousServerSocketChannel ssc) { this .ssc = ssc; } @Override public void completed (AsynchronousSocketChannel sc, Object attachment) { try { System.out.printf("[%s] %s connected\n" , Thread.currentThread().getName(), sc.getRemoteAddress()); } catch (IOException e) { e.printStackTrace(); } ByteBuffer buffer = ByteBuffer.allocate(16 ); sc.read(buffer, buffer, new ReadHandler (sc)); sc.write(Charset.defaultCharset().encode("server hello!" ), ByteBuffer.allocate(16 ), new WriteHandler (sc)); ssc.accept(null , this ); } @Override public void failed (Throwable exc, Object attachment) { exc.printStackTrace(); } } }